Truncated forms of the androgen receptor are associated with polyglutamine expansion in X-linked spinal and bulbar muscular atrophy.
نویسندگان
چکیده
X-linked spinal and bulbar muscular atrophy (SBMA) is a rare form of motor neuron degeneration linked to a CAG repeat expansion in the first exon of the androgen receptor gene coding for a polyglutamine tract. In order to investigate the properties of the SBMA androgen receptor in neuronal cells, cDNAs coding for a wild-type (19 CAG repeats) and a SBMA mutant androgen receptor (52 CAG repeats) were transfected into mouse neuroblastoma NB2a/d1 cells. The full length androgen receptor proteins, of 110-112 kDa and 114-116 kDa for the wild-type and mutant protein, respectively, were detected by Western blotting in transfected cells. In addition, the presence of an expanded polyglutamine tract in the SBMA androgen receptor appears to enhance the production of C-terminally truncated fragments of the protein. A 74 kDa fragment was particularly prominent in cells expressing the SBMA androgen receptor. From its size, it can be deduced that the 74 kDa fragment lacks the hormone binding domain but retains the DNA binding domain. The 74 kDa fragment may therefore be toxic to motor neurons by initiating the transcription of specific genes in the absence of hormonal control. Immunofluorescence microscopy on transfected NB2a/d1 cells showed that, after hormone activation, the wild-type androgen receptor translocated to the nucleus whereas the SBMA androgen receptor was mainly localized in the cytoplasm in the form of dense aggregates with very little androgen receptor protein in the nucleus. This could explain the reduction in transcriptional activity of the SBMA mutant as compared with wild-type androgen receptor.
منابع مشابه
FUS is not dysregulated by the spinal bulbar muscular atrophy androgen receptor polyglutamine repeat expansion
Spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis are two distinct forms of motor neuron disease with different genetic causes, pathology, and clinical course. However, both disorders are characterized by the progressive loss of lower motor neurons and by a similar protective response to growth factors in animal models, therefore raising the possibility of an overlap in th...
متن کاملCleavage, aggregation and toxicity of the expanded androgen receptor in spinal and bulbar muscular atrophy.
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disease caused by the expansion of a polyglutamine repeat within the androgen receptor (AR). We have studied the mutant AR in an in vitro system, and find both aggregation and proteolytic processing of the AR protein to occur in a polyglutamine repeat length-dependent manner. In addition, we find the aberrant metabolism of expande...
متن کاملExpression of expanded repeat androgen receptor produces neurologic disease in transgenic mice.
Spinal and bulbar muscular atrophy (SBMA) is a motor neuron disease caused by the expansion of a polyglutamine tract within the androgen receptor. This disease is unusual among the polyglutamine diseases in that it involves lower motor and sensory neurons, with relative sparing of other brain structures. We describe the development of transgenic mice, created with a truncated, highly expanded a...
متن کاملNeurotoxic effects of androgens in spinal and bulbar muscular atrophy
Expansion of polyglutamine tracts in nine different genes causes selective neuronal degeneration through unknown mechanisms. Expansion of polyglutamine in the androgen receptor is responsible for spinal and bulbar muscular atrophy (SBMA), a neuromuscular disorder characterized by the loss of lower motor neurons in the brainstem and spinal cord. A unique feature of SBMA in the family of polyglut...
متن کاملAndrogen-Dependent Neurodegeneration by Polyglutamine-Expanded Human Androgen Receptor in Drosophila
Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset, neurodegenerative disorder affecting only males and is caused by expanded polyglutamine (polyQ) stretches in the N-terminal A/B domain of human androgen receptor (hAR). Although no overt phenotype was detected in adult fly eye photoreceptor neurons expressing mutant hAR (polyQ 52), ingestion of androgen or its known antagoni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 7 1 شماره
صفحات -
تاریخ انتشار 1998